Load Balancing Overview
access911 is designed to handle high-volume emergency calls during disaster scenarios. The platform uses AWS cloud services with automatic scaling and load balancing to ensure reliable performance under extreme load conditions.
Architecture Components
API Gateway
API Gateway acts as the frontend HTTP layer providing:
Request Throttling : Prevents system overload
Request Validation : Ensures data integrity
Rate Limiting : Controls request frequency
CORS Support : Enables cross-origin requests
# API Gateway Configuration
ThrottleSettings :
BurstLimit : 5000
RateLimit : 2000
RequestValidator :
ValidateRequestBody : true
ValidateRequestParameters : true
AWS Lambda
Lambda functions provide on-demand compute with automatic scaling:
Concurrent Executions : Automatic scaling based on demand
Reserved Concurrency : Optional limits to protect downstream resources
Memory Configuration : Optimized for performance
Timeout Settings : Appropriate timeouts for emergency processing
# Lambda Configuration
RESERVED_CONCURRENCY = 100 # Limit concurrent executions
MEMORY_SIZE = 512 # MB
TIMEOUT = 30 # seconds
def lambda_handler ( event , context ):
# Process emergency call
# Handle concurrent requests efficiently
pass
DynamoDB
DynamoDB provides low-latency reads/writes with automatic scaling:
On-Demand Capacity : Automatic scaling for unpredictable spikes
Provisioned Capacity : Predictable performance with autoscaling
Adaptive Capacity : Handles hot partitions automatically
Global Secondary Indexes : Optimized query patterns
# DynamoDB Configuration
TableConfiguration = {
'BillingMode' : 'ON_DEMAND' , # or 'PROVISIONED'
'PointInTimeRecoverySpecification' : {
'PointInTimeRecoveryEnabled' : True
},
'GlobalSecondaryIndexes' : [
{
'IndexName' : 'emergency-type-index' ,
'KeySchema' : [
{ 'AttributeName' : 'emergency_type' , 'KeyType' : 'HASH' },
{ 'AttributeName' : 'timestamp' , 'KeyType' : 'RANGE' }
]
}
]
}
S3 Storage
S3 provides essentially unlimited storage for call payloads:
Lifecycle Policies : Automatic tiering to cheaper storage
Cross-Region Replication : Disaster recovery
Versioning : Data protection and audit trails
Encryption : Data security at rest
{
"LifecycleConfiguration" : {
"Rules" : [
{
"Id" : "ArchiveOldCalls" ,
"Status" : "Enabled" ,
"Transitions" : [
{
"Days" : 30 ,
"StorageClass" : "STANDARD_IA"
},
{
"Days" : 90 ,
"StorageClass" : "GLACIER"
}
]
}
]
}
}
Load Balancing Strategies
Horizontal Scaling
The platform scales horizontally by adding more Lambda instances:
# Automatic scaling based on queue depth
def calculate_scaling_factor ( queue_depth , current_instances ):
if queue_depth > current_instances * 10 :
return min (current_instances * 2 , MAX_INSTANCES )
elif queue_depth < current_instances * 5 :
return max (current_instances // 2 , MIN_INSTANCES )
return current_instances
Vertical Scaling
Lambda functions can be scaled vertically by adjusting memory:
# Memory scaling based on workload
def optimize_memory_configuration ( avg_processing_time , memory_usage ):
if avg_processing_time > 10 : # seconds
return min (memory_usage * 2 , 3008 ) # Max Lambda memory
elif avg_processing_time < 2 :
return max (memory_usage // 2 , 128 ) # Min Lambda memory
return memory_usage
Database Scaling
DynamoDB scales automatically with demand:
# DynamoDB scaling configuration
def configure_dynamodb_scaling ( table_name , expected_load ):
if expected_load > 1000 : # requests per second
# Use on-demand billing for unpredictable spikes
return {
'BillingMode' : 'ON_DEMAND' ,
'PointInTimeRecoveryEnabled' : True
}
else :
# Use provisioned capacity with autoscaling
return {
'BillingMode' : 'PROVISIONED' ,
'ProvisionedThroughput' : {
'ReadCapacityUnits' : expected_load // 2 ,
'WriteCapacityUnits' : expected_load // 2
},
'AutoScalingEnabled' : True
}
Caching Strategies
Implement caching to reduce database load:
# Redis cache for frequently accessed data
import redis
redis_client = redis.Redis( host = 'your-redis-endpoint' , port = 6379 )
def get_cached_call ( call_id ):
cached = redis_client.get( f "call: { call_id } " )
if cached:
return json.loads(cached)
return None
def cache_call ( call_id , call_data , ttl = 300 ):
redis_client.setex( f "call: { call_id } " , ttl, json.dumps(call_data))
Connection Pooling
Optimize database connections:
# DynamoDB connection pooling
import boto3
from botocore.config import Config
# Configure connection pooling
config = Config(
max_pool_connections = 50 ,
retries = { 'max_attempts' : 3 }
)
dynamodb = boto3.resource( 'dynamodb' , config = config)
Batch Processing
Process multiple calls efficiently:
# Batch DynamoDB operations
def batch_write_calls ( calls ):
with dynamodb.Table( 'emergency-calls' ).batch_writer() as batch:
for call in calls:
batch.put_item( Item = call)
Monitoring and Metrics
CloudWatch Metrics
Monitor key performance indicators:
# CloudWatch metrics
import boto3
cloudwatch = boto3.client( 'cloudwatch' )
def publish_metrics ( metric_name , value , unit = 'Count' ):
cloudwatch.put_metric_data(
Namespace = 'DispatchAI' ,
MetricData = [
{
'MetricName' : metric_name,
'Value' : value,
'Unit' : unit,
'Timestamp' : datetime.utcnow()
}
]
)
Key Metrics to Monitor
Request Rate : Number of requests per second
Response Time : Average response time
Error Rate : Percentage of failed requests
Concurrent Executions : Number of active Lambda instances
DynamoDB Throttles : Number of throttled requests
Queue Depth : Number of pending requests
Alerting
Set up alerts for critical metrics:
# CloudWatch Alarms
Alarms :
- AlarmName : HighErrorRate
MetricName : ErrorRate
Threshold : 5.0
ComparisonOperator : GreaterThanThreshold
EvaluationPeriods : 2
- AlarmName : HighResponseTime
MetricName : ResponseTime
Threshold : 10.0
ComparisonOperator : GreaterThanThreshold
EvaluationPeriods : 3
Disaster Recovery
Multi-Region Deployment
Deploy across multiple AWS regions:
# Multi-region configuration
REGIONS = [ 'us-east-1' , 'us-west-2' , 'eu-west-1' ]
def deploy_to_region ( region ):
# Deploy Lambda functions
# Deploy DynamoDB tables
# Deploy S3 buckets
# Configure cross-region replication
pass
Backup Strategies
Implement comprehensive backup strategies:
# Automated backups
def create_backup ():
# DynamoDB point-in-time recovery
# S3 cross-region replication
# Lambda function code backup
pass
Best Practices
Optimize Lambda Functions
Use appropriate memory settings and optimize code for performance.
Design DynamoDB tables for expected query patterns and access patterns.
Implement comprehensive monitoring and alerting for all components.
Use least-privilege IAM policies and enable encryption at rest.
Scaling Guidelines
Start Small : Begin with conservative scaling settings
Monitor Closely : Watch metrics during initial deployments
Test Limits : Conduct load testing to understand system limits
Plan for Spikes : Design for 10x normal load during emergencies
Load Testing
Simulation Load Testing
Use the simulation engine to test system limits:
# Generate high-volume test load
curl -X POST https://v2y08vmfga.execute-api.us-east-1.amazonaws.com/simulate \
-H "Content-Type: application/json" \
-d '{
"scenario": "nashville_tornado",
"num_calls": 1000
}'
Use tools like Apache JMeter or Artillery for load testing:
# Artillery configuration
config :
target : 'https://your-api-gateway-url'
phases :
- duration : 300
arrivalRate : 100
scenarios :
- name : "Emergency Call Simulation"
requests :
- post :
url : "/simulate"
json :
scenario : "nashville_tornado"
num_calls : 10
Troubleshooting
Common Issues
Monitor consumed capacity and adjust provisioned capacity or use on-demand billing.
Increase timeout settings and optimize function performance.
Increase throttling limits and implement request queuing.
Monitor memory usage and adjust Lambda memory configuration.
# Performance tuning checklist
def performance_tuning_checklist ():
return {
'lambda_memory' : 'Optimize memory settings' ,
'dynamodb_capacity' : 'Monitor and adjust capacity' ,
'api_gateway_limits' : 'Increase throttling limits' ,
'connection_pooling' : 'Implement connection pooling' ,
'caching' : 'Add caching layers' ,
'batch_processing' : 'Use batch operations'
}
Production Deployment : Ensure proper load testing and monitoring before deploying to production emergency response systems.